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Chaotic Dynamics of High-Order Neural Networks 
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The dynamics of an extremely diluted neural network with high-order synapses 
acting as corrections to the Hopfield model is investigated. The learning rules 
for the high-order connections contain mixing of memories, different from all 
the previous generalizations of the Hopfield model. The dynamics may display 
fixed points or periodic and chaotic orbits, depending on the weight of the high- 
order connections e, the noise level T, and the network load, defined as the ratio 
between the number of stored patterns and the mean connectivity per neuron, 
ct = P/C. As in the related fully connected case, there is an optimal value of the 
weight e that improves the storage capacity of the system (the capacity 
diverges). 

KEY WORDS: Neural networks; multineuron interaction; chaotic dynamics. 

1. INTRODUCTION 

Neura l  networks  have been the subject of  intense research in statistical 
mechanics in the last decade. Besides the equi l ibr ium proper t ies  that  are 
reasonably  well unders tood  in the f ramework  of  spin-glass theory,  dynami-  
cal proper t ies  have a t t rac ted  much at tent ion:  in the limit of  low loading  or  
focusing only in the first few time steps, several t rea tments  tl) yielded impor-  
tant  results, while only very recently a f ramework to s tudy fully connected 
sa tura ted  networks  was developed by Coolen and Sherrington. t2) There is 
another  limit that  can be studied, when the connect ions  are extreme and 
asymmetr ica l ly  diluted,  and  it is interest ing mainly  for two reasons: the 
dynamics  can be exactly solved (see Derr ida ,  Gardner ,  and  Zippelius,  t3~ 
hereafter  D G Z )  and both  di lut ion and asymmet ry  are biological ly realistic 
characterist ics,  absent  in the fully connected s tandard  Hopfield model. 
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In order to introduce asymmetry in the connections through dilution, 
the synapses Jo" and Jj~ are cut with probability 1 - C / N  independently of 
each other, where C is the mean connectivity of each neuron and the 
extreme dilution limit is obtained when C ~ , I n N  ( N  is the size of the 
network). Measuring the network load by 0c = P/C,  where P is the number 
of stored patterns, DGZ found that the diluted version of the Hopfield 
model is more efficient than the fully connected case ( C =  N)(4): the critical 
value above which the system cannot retrieve the stored information is 
o~ c = 2~re. 

Synapses connecting more than two neurons can be considered to 
both improve the storage capacity of the network ~5-~3) and to mimic real 
synapses existing in nervous systems (see refs. 5 and 12 and references 
therein). Diluted networks with high-order connections were studied in 
refs. 7-9. Kanter ~7) and Tamarit et al. ~8~ considered an energy term like a 
monomial of order k in the overlap (m~ k) and found a discontinuous 
transition at o~,.(k) for k > 2. Also, in the (~, T) phase diagram the retrieval 
phase shrinks as k increases: 0~c(k) ~ 0 as k --* ~ ,  although in this limit the 
retrieval is perfect. For such models, only fixed points of the dynamics 
exist. On the other hand, Wang and Ross O) treated a polynomial, control- 
ling the relative coefficients (weights), and found, besides a retrieval phase, 
regions where the system can be either periodic or chaotic, depending on 
the noise or the degree of parallelism in the updating. Although chaotic in 
the high-dilution limit, when the fully connected model is studied, ~2~ it does 
not present any important difference from the standard Hopfield model. 

Comparing these results, for some models dilution and asymmetry 
alone are not sufficient to generate chaotic behavior. Thus, a relevant 
question is to understand under which conditions the dynamics of the 
neural network presents other features rather than only fixed points. This 
is an interesting question because many authors t~4~ have emphasized the 
relevance of the chaotic behavior present in natural neural systems like the 
human brain to the understanding of their striking features such as 
creativeness, complex interactions among memories, etc. Dynamics com- 
prising only fixed points, although suitable for pattern retrieval, are not 
adequate in some contexts, since a never-stopping path on the phase space 
is a characteristic of living brains. 

In this paper we study the dynamical effects of introducing a new 
correction term to the Hopfield model ~ '  ~2) in the extreme dilution limit of 
both two- and fourth-order synapses with the objective of analyze and 
highlight their role in the complex dynamics of neural networks. The dif- 
ference between our model and those studied by Kanter, tT~ Tamarit et al. ~8~ 
and Wang and Ross (9) lies in the nature of the high-order connections we 
consider. Our model presents an unusual and very puzzling behavior in the 
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fully connected limit, t 12) and this is somehow reflected in the high-dilution 
case. The paper is organized as follows: Section 2 presents the model, and 
analytical and numerical results are given for the dynamics in Section 3. In 
Section 4 we summarize and present the conclusions. 

2. THE MODEL 

In binary neural networks, such as, for example, the Hopfield 
model, tls. 16) each neuron is modeled by an Ising variable St that can take 
the values { - 1, + 1 } representing the passive and active state, respectively. 
Possible states of the network are given by N-dimensional vectors 
S e { - 1, + 1 } N and the embedded memories are associated with P of these 
states, denoted by ~' (# = 1,..., P). 

The fully connected truncated model can be regarded as the Hopfield 
model with Hebb learning rule plus correction terms and its dynamics is 
ruled by a Lyapunov function whose long-time behavior (equilibrium 
states) can be inferred from the statistical mechanics analysis of the system 
(see refs. 11 and 12 for a detailed study). This system has an extremely rich 
behavior, different from previously known models, which strongly depends 
on the value of the weights of the high-order terms. 

The dynamics of the extremely diluted and asymmetric version of the 
truncated model is here studied in two different cases: the initial state has 
a macroscopic overlap with (a) only one pattern and (b) two correlated 
patterns (coexisting with P - 2  uncorrelated ones). Due to the asymmetry 
in the connections, a Lyapunov function can no longer be defined for the 
network and hence we are constrained to study the time evolution of the 
system ruled by the heat bath dynamics, given by 

f + 11 with probability {1 + e x p [ - 2 f l o h i ( t ) ] } - '  Si(t + 1)= 
- with probability {1 +exp[+2f lohi( t )]}-1  (1) 

where the parameter f l o = T o  I (called the inverse of the temperature) 
measures the noise level of the net and h~(t) is the local field acting on the 
neuron i at time t: 

h,= y y. (2) 
j j .k . I  

The couplings are 

Jo.= co-Y, (3) 
/ /  

t I J,~kl = ~(Jukl + JIjk; + Jkjil) (4) 

,r.#,xv r. v 
J u k / =  Cijk/ ~ ~"=1 "~l,-'~/ (5) 

fl ~v 
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and C,j and Cijkt are random variables distributed according to the 
probabilities p and p: 

p(Co)--C 6(co-1)+(1-C)6(Cu) 

c c )+(l-,c~']6(c,j~,) 
P ( i j k l )  = - ~  (~( Cijkl -- 1 IV I1 

(6) 

where C,~ log N. The asymmetry is introduced through the independence 
of C a and Cj; (the same holds for Co-kD. 

In the fully connected case some of the self-connections are not zero, 
particularly Jiikt and Jukk- These self-interactions create correlations between 
the states of neuron i at different times, which apparently prevents one 
from using the DGZ prescription to obtain the time evolution of the 
diluted network. Actually, it can be easily shown that in the diluted case 
the field generated by the self-interactions vanishes in the thermodynamic 
limit, implying null correlations (because Jukl,'~JkiP/N and PtN--,,O as 
N-o ~) .  

3. RESULTS 

3.1. One-Pattern Retrieval 

Assuming that the updating is parallel and the initial state is correlated 
with only one of the embedded memories, we are interested in obtaining a 
recurrent equation, 

re(t+ 1)=f(m( t ) )  

for the overlap re(t) between the state of the network and this memory, 

m(t) = 1 ~ .  (~S~(t)) (7) 

where ( . . . )  denotes both thermal and configuration averages. Using 
standard (and exact) techniqued 3~ and considering nonbiased patterns, 
after taking the limit C--* oo (but slower than In N), the equation ruling the 
parallel evolution of the system reads 

m(t+l)=f::~ytanhfl{m(t)-(2~)iiEy[1-em2(t)]} (8) 
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where Ca = P -  1, fl = C/T o, and ~ y  is the Gaussian measure: 

~ y  = ~ e -  y2 

In the T =  0 limit, f(m) becomes 

(9) 

[ re(t) ] 
f(m) erf 

[ (2a)U 2 ~ Z  emZ(t)]j 
(lo) 

and for 0 < e < l it is cont inuous,  while it is discontinuous otherwise. 
In Fig. 1 we show the fixed points of the equat ion m(t+ 1 ) = f ( r n ( t ) )  as 

a function of ~ for several values of e < 1. For  e < 0.266 the system has only 
a fixed point  that decreases cont inuously down to 0 at a c = 2/n. Above a c 
there is only the disordered (m = 0) solution. For  0.266 < e < 1 the transit ion 
is discontinuous and ac is greater than 2/n, increasing with e. In this case 
there are three different regimes: for a < 2In only the retrieval solutions are 
stable; for 2In < 0c < a c this solution coexists with the m = 0 one and for 
ct > a c there is only the disordered solution. In the intermediate regime, an 
unstable fixed point  appears that separates the basins of attraction of the 
two stable fixed points, and  the retrieval basin decreases with a, as can be 
seen in Fig. 1. Also, for a given value of a, the closer e is to 1 the better 
is the retrieval. The retrieval region below a c, where there exists a nonzero 
fixed point,  is named R~, while above ac the disordered phase is named P. 

1 .0  ~ = 0 .5  

0 .8  ,/ 

E 0.6 

0.4 

0.2 

0.0 
0 .0  0 .2  0 .4  0 .6  0 .8  1 .0  

O~ 

Fig. 1. Fixed points m versus = for several values of e. The solid line is for stable solutions, 
while the dashed is for unstable ones. For a > 2In the m = 0 solution is always stable. 
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At e = 1 there always is the solution m = 1 and the unstable fixed point 
found for ~ > 2/n drops to zero as we approach e = I. Hence, the basin 
of  attraction of  the retrieval solution increases while the basin of  the 
coexistent disordered solution shrinks to zero when e ~ 1. This means that 
the network capacity diverges and the retrieval is perfect for all initial states 
with nonzero macroscopic overlap! This behavior is the analog of  the Cop t 

found in the fully connected system, where eopt=(1-b0~)-l ,  (12) while here 
we have 

1 1 
eopt=l+P/N I + o~C/N 1 (11) 

since C,~ In N. 
For  values of  e > 1 a rich behavior emerges and the system presents a 

novel kind of retrieval. The overall behavior of the system is presented in 
Fig. 2, showing several regimes. For  a fixed e and low values of  0c the 
system is in a retrieval phase (R2) where it oscillates between a state with 
overlap m with the pattern and a state with - m  overlap. 

As ct increases, the system enters a new phase. It starts oscillating 
between two distinct values of m, say m~ and m 2 (Im~l:/:lm21), while 
higher periods appear with increasing values of  a leading to a chaotic 

12 

10 

8 

6 

P 

2 ....... _ ~ R 1  

~ o15 1.0 

P 

1.5 2.0 

Fig. 2. Phase diagram ct versus e at T= 0 for the diluted truncated model. The transition is 
continuous for e<0.266. The optimal value of e is 1, where ~ c ~  oo as I 1 - e l  -2. For high 
values of ~t the system is in the disordered phase (P) and for e > l  it can present a 
periodic/chaotic phase (C). The retrieval phase may be separated into two, Rj and R2, as 
described in the text. 
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regime. The route to chaos followed by the system is not exactly period 
doubling, since it suffers split bifurcationst~7~: before doubling the period of 
the attractor, the system doubles the number of stable attractors. For 
instance, a period-2 cycle splits into two period-2 cycles before becoming a 
period-4 cycle. The transition from the twofold attractor to the double- 
period one occurs when the system enters a superstable orbit (those that 
contain the critical points). A representative behavior of the system is 
shown in Fig. 3. The basins of each attractor were also examined and for 
initial values of m near 0, their domains are extremely mixed. 

To decide whether the system evolution is chaotic or not we evaluated 
the Lyapunov exponent using sequences of n =  10,000 points. In the 
aperiodic regime one has 2 > 0, indicating that the system is chaotic, while 
2 < 0 if its behavior is periodic. It is worth noting that even in the periodic 
and in the chaotic attractors, the system always passes very close to the 
memorized pattern, as can be observed in Fig. 3 for e = 2. We have verified 
numerically that for any point in this phase (C), the attractors have at least 
one point with overlap m near 1, hence it is possible to interpret the cyclic 
and the chaotic phase as an alternative retrieval phase, in which the system 
does not recognize a memory by reaching a fixed point, but by wandering 
around it. 

For large enough 0~ the system enters a disordered phase [the only 
fixed point of Eq. (10)] as can be observed in the phase diagram of Fig. 2 
and, as e ~  1, 0%~ 11-el  -2. In the fully connected case there is not a 
chaotic phase (not even a periodic one), because there the connections are 
symmetric allowing the introduction of a Lyapunov function. 

Fig. 3. 

1.0 

0.5 

E O.O 

-0.5 

-1.0 

0.0 0.5 1.0 1.5 2.0 2.5 

Plot of  m versus = at T =  0 for ~ = 2. For  high values of  e there is only the m = 0 
solution, while for lower values of  e the system behavior is complex. 
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Fig. 4. Phase diagram for some values of e < 1 showing the critical line T c separating the 
only two phases: a retrieval one (T< To) and the m =0 one (T> T~). For all e < 0.266 the line 
T c is the same as for e = 0. 

Figure 4 displays the T versus ~ phase d iag ram for some values of  
e~< l ,  where there are only f ixed-point  a t t ractors:  one with m = 0  (P)  and 
another  with m ~ 0 (R,) .  In  par t icular ,  for values of  e where the t ransi t ion 
is cont inuous  (e < 0.266) the line T c is independent  of e and  satisfies 

Pc N y  sech2[flcy(20@/2] = 1 (12) 
- - c O  

If  e < 1, the map  equat ion (8) always presents a solut ion with m = _+ e ~/2 at 

= - ~ - l n  7 - -  1 (13) 

which means  that  for T =  T* = ( f l*)-~  the system presents the above  solu- 
t ion for all values of  =. In  the limit e --+ 1, T* = 0 and m = _+ 1, as is shown 
in Fig. 2 and,  e -+ oo, T* --+ 1. Figure  5 shows the T versus ct phase d iag ram 
for e = 2. Note  that,  besides the three phases appear ing  at  T =  0, we now 
find also an R~ phase even for e > 1. F o r  increasing values of = the m = 0 
region dominates  except for points  a round  T*. In Fig. 6 the behavior  of  m 
for e = 2 and ~ = 2 is shown as a function of  T with the cor responding  
Lyapunov  exponent  2. No te  the backward  per iod-doubl ing  bifurcat ion 
leading to a retr ieval  phase for high temperatures:  the system leaves the 
chaotic  regime and become per iodic  as the tempera ture  increases until  a 
certain tempera ture  where it has a fixed po in t  and  is able to retrieve the 
s tored information.  
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Fig. 5. Phase diagram for e = 2. The retrieval (R2) and the periodic or chaotic phases (C) are 
surrounded by the m = 0  one (P). Note that for T* 20.8 the system has the solution 
m = + I /v/2  for all values of ~t. 
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Fig. 6. The overlap m versus T for e = 2 and ct = 2 and the corresponding Lyapunov 
exponent. The system has only a retrieval regime at high temperatures. 
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3.2. T w o - P a t t e r n  Retr ieval  

We also study the case where the initial state has a macroscopic 
overlap only with the two first memories, which have a fixed macroscopic 
overlap between them, 

1 
K = ~ ] ~  (14) 

the remaining P - 2  being uncorrelated. We are interested in determining 
if the model presents transitions between two or more memories, which 
may be useful in tasks like retrieving temporal sequences (for a review see 
ref. 18). These kinds of transitions may be induced here since the fourth- 
order interactions contain terms that are mixing of all the patterns /~ 
and v. Another possibility is that instead of oscillating from one pattern top 
another, a new state is generated that is a combination of the patterns (not 
only the two involved, but all of them). 

The quantities of interest are then the overlaps with these two 
memories: 

ml(t) = 1 ~  (~Si(t)) 
(15) 

m2(t)=l~ (~2iSi(t)) 

and the time evolution equations for them are ruled by 

I [ ( m2) M ( t + l ) = ( l + x )  ~ytanhfl M 1-e 

--y(2~)'/2 (1 - e(M22m2))] 
(16) 

m(t+l)=(1-x)I~ytanh,[M(l+eM24 m2) 

- y(2~,1/2 (1 e(M22m2))l 

where 

M=mi +m 2, m=ml-rn2 (17) 
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The attractors of these equations were numerically studied starting 
always from the initial condition ml(0 ) = 1 and m2(0) = x in the cases 0c = 0 
and T = 0 .  Five different phases were distinguished: a retrieval one (R]) 
which corresponds to a fixed point with [rn~[ > [m2[> 0, another retrieval 
phase (R2) in which the system oscillates in a period-two cycle between the 
states with ]m,.[ =cte ,  [ m l [ >  [m2[, a mixed phase (M)wi th  ml = m 2 ~ 0 ,  a 
disordered phase (P) with ml = m2 = 0, and a cyclic/chaotic one (C). 

In the preceding section when one considered macroscopic overlap 
with only one pattern, the D G Z  equation was recovered when oc = 0. In the 
same limit, but when the system has macroscopic overlap with two 
memories, the D G Z  equations are no longer recovered: there is still an e 
dependence on the equations, even when x = 0. In other words, the system 
may present cyclic and chaotic regimes, absent if one looks for a retrieval 
solution. Surprisingly, the system may behave chaotically even when all 
sources of noise are absent. 

In Fig. 7 we present the phase diagram T versus e for x = 0.2 and 
o~ = 0. For T =  0 the system present only two phases: the retrieval one for 
[el < x  - I  and the cyclic/chaotic one for ]el > x -1, while the mixed phase 
appears for a given temperature that depends on the value of x. It is impor- 
tant to stress that the boundary between the retrieval phase and the 
cyclic/chaotic one for positive e shows the first appearance of cyclic orbits: 
inside the C phase there are islands of retrieval. Also, in the boundary 
between the mixed phase and the disordered one there is a point e* above 
which the transition is continuous and below which it is discontinuous. It 

2.0 

I,,-, l s ~ ~  P 

o.s C R 
0.0 

-8 -6 -4 -2 0 2 4 6 8 

E 
Fig. 7. Phase diagram for = = 0 and x = 0.2 m the case where there is macroscopic overlap 

with two memories (see text). 
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can be shown that the transition line in the continuous case is given by 
T c = l + x .  

In the case ~ 0  and T = 0 ,  the 0c versus c phase diagram is 
qualitatively similar to the one in Fig. 2, except for the appearance of the 
mixed phase. There is also an optimal value for e where the capacity 
diverges, given by e o p  t = 1 - x  2, and the boundary between the disordered 
phase and the mixed one is 0c c = 2( 1 + x)2/n. 

4. CONCLUSIONS 

We presented an exact solution for the dynamics of a model for neural 
networks with high-order interactions that shows a very rich behavior 
depending on the parameters ~, e, and T. In analogy with the related fully 
connected model, there is an optimal value of e for which the model always 
retrieves the embedded information. It is important to stress that for some 
values of e the retrieval region is found at high values of T: amazingly, as 
the temperature is decreased, the system passes from a disordered phase to 
an ordered one and, after passing through a region where it presents cyclic 
and chaotic orbits, it reenters the paramagnetic region. In this case, the 
presence of thermal noise may improve the retrieval abilities of the system. 

The periodic and chaotic behaviors are not present for e < 1 because 
in this case the one-dimensional map equation (8) is invertible and con- 
tinuous, not allowing chaos. (19) Physically, the reason for this is that above 

= 1 the Hopfield second-order term is surpassed by the fourth-order one 
and, due to the mixing of patterns on the synapses (the presence of both 

and v in the learning rule), cycles are introduced. The absence of this 
kind of transition in the fully connected model is due to the possibility of 
symmetrization of all the connections and hence a Lyapunov function 
exists implying the existence of fixed points only. This is analogous to some 
models where the task is to retrieve temporal sequences (18) and the learning 
rule contains pointers explicitly storing the transitions between states. 

In the case of macroscopic overlap with two patterns a new phase 
that mixes these two memories appears. Its presence is an indication that 
the study of the generalization abilities of the model may reveal some 
interesting features. Another fact is that at 0~ = 0, the one-pattern dynamics 
recovers the DGZ equation, while in the two-pattern case, even when the 
two patterns are totally independent (x = 0), the dynamics still depends on 
e. Also, in the noise-free situation (both 0c=0 and T = 0 )  the system 
presents cycles and chaos. 

Comparing these results with the ones obtained in the study of the 
dynamics of the generalized Hopfield model, (9) some points deserve to be 
stressed. First of all, the equation describing their dynamics is always 
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con t inuous .  Second ,  in thei r  m o d e l  there  is no  pe r iod i c / chao t i c  b e h a v i o r  

i f  the  noise  level is set t o o  low. This  is because  the n o n m i x i n g  m e m o r i e s  

n a t u r e  o f  the  connec t ions .  

D u e  to the  very  c o m p l e x  na tu re  o f  the sys tem behav io r ,  it w o u l d  also 

be  in te res t ing  to s tudy  the t h e r m o d y n a m i c s  o f  the  symmet r i c  d i lu ted  

case  (2~ t ry ing to see the  in te rp lay  be tween  the fully connec t ed  case and  the 

h igh ly  d i lu ted  one.  
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